
A Newton Method for Linear Programming1

O. L. MANGASARIAN
2

Abstract. A fast Newton method is proposed for solving linear pro-

grams with a very large (»106) number of constraints and a moderate

(»102) number of variables. Such linear programs occur in data mining

and machine learning. The proposed method is based on the apparently

overlooked fact that the dual of an asymptotic exterior penalty formu-

lation of a linear program provides an exact least 2-norm solution to the

dual of the linear program for finite values of the penalty parameter but

not for the primal linear program. Solving the dual problem for a finite

value of the penalty parameter yields an exact least 2-norm solution to the

dual, but not a primal solution unless the parameter approaches zero.

However, the exact least 2-norm solution to the dual problem can be used

to generate an accurate primal solution if m$n and the primal solution

is unique. Utilizing these facts, a fast globally convergent finitely termi-

nating Newton method is proposed. A simple prototype of the method is

given in eleven lines of MATLAB code. Encouraging computational re-

sults are presented such as the solution of a linear program with two

million constraints that could not be solved by CPLEX 6.5 on the same

machine.

Key Words. Linear programming, Newton method, least norm

solution, exterior penalty.

1The research described in Data Mining Institute Report 02-02 was supported by National

Science Foundation Grants CCR-9729842 and CCR-0138308, by Air Force Office of Scientific

Research Grant F49620-00-1-0085, and by the Microsoft Corporation. I am indebted to Robert

R. Meyer for suggesting the MATLAB command SPONES to help generate very large test

problems, to Jinho Lim for providing a CPLEX mex file for MATLAB, to Steve Wright for

suggesting the use of various CPLEX options, and to my PhD student Michael Thompson for

the numerical results presented in Table 3.
2John von Neumann Professor Emeritus of Mathematics and Computer Sciences, Computer

Sciences Department, University of Wisconsin, Madison, Wisconsin.

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 121, No. 1, pp. 1–18, April 2004 (g2004)

1

0022-3239=04=0400-0001=0 g 2004 Plenum Publishing Corporation

1. Introduction

The method proposed here is motivated by the effectiveness of a finitely

terminating Newton method proposed in Ref. 1 for the unconstrained

minimization of strongly convex piecewise quadratic functions arising from

quadratic programs and utilized successfully for classification problems in

Ref. 2. To apply this approach to linear programs, a reasonable choice is the

least 2-norm formulation (Refs. 3–6) of a linear program as a strongly con-

vex quadratic program, which gives an exact least 2-norm solution for finite

parameter values. This has been done in Ref. 7, where a finite Newton

method was proposed but without any computational results and without

giving an exact solution to the dual of the least 2-norm solution. In our

approach here, we make no assumption about our linear program other than

solvability and an implied uniqueness condition, which are explained in

detail in Section 2. In Section 3, we state our Newton algorithm with an

Armijo stepsize and give its global convergence. In Section 4, we give

encouraging comparative test results with CPLEX 6.5 (Ref. 8) on a class of

synthetically generated sparse linear programs with as many as two million

constraints as well as on six publicly available machine learning classification

problems. We also give brief MATLAB codes for a test problem generator as

well as a simple version of our Newton solver without an Armijo stepsize.

This code is used to obtain all of our numerical results. On five out of seven

synthetic test problems, the proposed method was faster than CPLEX by a

factor in the range of 2.8 to 34.2. On the remaining two problems, CPLEX

ran out of memory. On the six smaller machine learning classification prob-

lems, CPLEX was faster but LPN gave higher training and testing set

classification correctness.

We note that, under the implied uniqueness assumption of our paper, all

that is needed is that the number of constraints m of the primal linear pro-

gram (2) be no less than the number of variables n of the problem. However

the principal effectiveness of the proposed method is to problems where m

is much bigger than n as evidenced by the numerical examples of Section 4.

Other approaches to linear programs with very large number of constraints

are given in Refs. 9–10. Another related approach that uses similar ideas to

those presented here is given in Ref. 11, but does not recover the primal

solution from the dual as we do.

A word about our notation. All vectors will be column vectors unless

transposed to a row vector by a prime superscript. For a vector x in the

n-dimensional real space Rn, the plus function x+ is defined as

(x+)i = max{0, xi}, i = 1, . . . , n,

2 JOTA: VOL. 121, NO. 1, APRIL 2004

while x* denotes the subgradient of x+ which is the step function defined as

(x
*
)i = 1, if xi>0,

(x
*
)i = 0, if xi<0,

(x
*
)i [̨0, 1], if xi = 0, i = 1, . . . , n:

The scalar (inner) product of two vectors x and y in the n-dimensional real

space Rn will be denoted by x¢y. The 2-norm of x will be denoted by kxk,
while kxk1 and kxkO will denote the 1-norm and O-norm respectively. For

a matrix A˛Rm · n, Ai is the ith row of A which is a row vector in Rn and kAk
is the 2-norm of A, maxkxk = 1kAxk: If S�{1, . . . , m}, the AS is the submatrix

of A consisting of rows Ai˛S. A column vector of ones of arbitrary dimen-

sion will be denoted by e and the identity matrix of arbitrary order will be

denoted by I. If f is a real-valued function defined on the n-dimensional real

space Rn, the gradient of f at x is denoted by rf (x) which is a column vector

in Rn and the n·n matrix of second partial derivatives of f at x is denoted

by r2f (x). For a piecewise quadratic function, such as

f (x) = (1=2)k(Ax – b)+k
2
,

where A˛Rm · n and b˛Rm, the ordinary Hessian does not exist because its

gradient, the n·1 vector

rf (x) =A¢(Ax – b)+,

is not differentiable. However, one can define its generalized Hessian (Refs.

1, 12, 13), which is the n· n symmetric positive-semidefinite matrix

¶2
f (x)=A¢diag(Ax – b)*A, (1)

where diag(Ax – b)* denotes an m·m diagonal matrix with diagonal ele-

ments (Aix – bi)*, i = 1, . . . , m. The generalized Hessian (1) has many of the

properties of the regular Hessian (Refs. 1, 12, 13) in relation to f (x).

Throughout this work, the notation := will denote definition and s.t. will

stand for ‘‘such that’’.

2. Equivalence of Primal Exterior Penalty LP to Dual Least 2-Norm LP

We give in this section an apparently overlooked, but implied (Refs. 3,

7, 14), result that a parametric exterior penalty formulation of a linear pro-

gram for any sufficiently small but finite value of the penalty parameter,

provides an exact least 2-norm solution to the dual linear program. We begin

JOTA: VOL. 121, NO. 1, APRIL 2004 3

with the primal linear program

min
x˛Rn

c¢x, s:t: Ax#b, (2)

where c˛Rn, A˛Rm · n, b˛Rm, and its dual

max
u˛Rm

– b¢u = – min
u˛Rm

b¢u, s:t: A¢u + c = 0, u$0: (3)

We write the parametric exterior penalty formulation of the primal linear

program for a fixed positive value of the penalty parameter e as the uncon-

strained minimization problem

min
x˛Rn

f (x), (4)

where f is the penalty function

f (x) := min
x˛Rn

ec¢x+ (1=2)k(Ax – b)+k
2: (5)

The positive penalty parameter e needs to approach zero in order to obtain a

solution to the original linear program (Refs. 15, 16) from (4). However, this

will not be the case if we look at the least 2-norm formulation (Refs. 3, 5) of

the dual linear program (3),

– min
v˛Rm

(b¢v + (e=2)v¢v), s:t: A¢v + c = 0, v$0: (6)

That (6) leads to a least 2-norm solution of the dual linear program (3)

follows from the fact established in Refs. 3, 5 that, for any positive e such

that e˛(0, ē] for some positive ē , the minimization problem (6) picks, among

the elements of the solution set of the dual linear program (3), that which

minimizes the perturbation term v¢v=2. Because the objective function of (6)

is strongly convex, its solution v̄ is unique. The necessary and sufficient

Karush-Kuhn-Tucker optimality conditions for problem (6) are that there

exists a y˛Rn such that

ev$0, ev + b –Ay$0, ev¢(ev + b –Ay)= 0, A¢v + c = 0, (7)

or equivalently,

ev = (Ay – b)+, A¢v + c = 0: (8)

That is,

v = (1=e)(Ay – b)+, A¢(Ay – b)++ec = 0: (9)

Defining f (y) as in (5), the optimality conditions (9) for the dual least 2-norm

solution become

v = (1=e)(Ay – b)+, rf (y) =A¢(Ay – b)++ec = 0: (10)

4 JOTA: VOL. 121, NO. 1, APRIL 2004

That is,

v = (1=e)(Ay – b)+, y˛arg min
y˛Rn

f (y) = arg min
y˛Rn

(1=2)k(Ay – b)+k
2
+ ec¢y,

(11)

which are precisely the necessary and sufficient conditions that y be a mini-

mum solution of the parametric exterior penalty function f (y) for the primal

linear program (2), for any positive value of the penalty parameter e. Hence,

solving the exterior penalty problem (4) for any positive e provides a solution

v = (1=e)(Ay – b)+

to (6). If in addition e˛(0, ē] for some positive ē , it follows by Theorem 1

of Ref. 5 that v is a least 2-norm solution to the dual linear program (3).

We have thus established the following proposition.

Proposition 2.1. Equivalence of Least 2-Norm Dual to Finite-

Parameter Penalty Primal. The unique least 2-norm solution to the dual

linear program (3) is given by

v = (1=e)(Ay – b)+, (12)

where y is a solution of the primal penalty problem,

min
y˛Rn

f (y)= (1=2)k(Ay – b)+k
2
+ ec¢y, (13)

for any finite value of the penalty parameter e (̨0, ē] for some positive ē .

We note that the gradient,

rf (y) =A¢(Ay – b)++ec, (14)

which is Lipschitz continuous with constant kA¢kkAk, is not differentiable.

However, as stated in the Introduction, a generalized Hessian (Refs. 1, 12,

13) with many of the properties of the ordinary Hessian can be defined,

which is the following n·n symmetric positive-semidefinite matrix:

¶2
f (y) =A¢diag(Ay – b)*A, (15)

where diag(Ay – b)* denotes an m·m diagonal matrix with diagonal ele-

ments (Aiy – bi)*, i = 1, . . . , m. The step function (.)*, is defined in the Intro-

duction and is implemented here with (0)* = 0. The matrix ¶2f (y) will be used

to generate our Newton direction, or more precisely a modified Newton

direction, since the generalized Hessian may be singular in general. In fact,

the direction that will be used is the following one:

d :=– (d I + ¶2
f (y))–1rf (y), (16)

JOTA: VOL. 121, NO. 1, APRIL 2004 5

where d is some small positive number. With this direction and a variety of

stepsizes (Ref. 17, Example 2.2), we can establish global convergence. A key

empirical computational property of this direction appears to be global

convergence for a class of linear programs with mAn from any starting point

without any stepsize at all. The exact least 2-norm solution v̄ for the dual

linear program (3) is obtained by first solving the primal exterior penalty

problem (13) for any e˛(0, ē], and then using (12) to determine the unique

least 2-norm dual solution v̄ . This exact dual solution can be utilized to

generate an exact solution to the original primal linear program (2) by sol-

ving the constraints of the linear program (2) corresponding to positive

components of v̄ j as equalities, that is,

Ajz = bj , j˛S := { jjv̄ j>0}: (17)

We note that this system of linear equations must always have a solution z as

a consequence of the complementarity condition:

Ajz – bj = 0, for v̄ j>0, j = 1, . . . , m:

In fact, (17) yields an exact solution of the primal linear program (2) if we

make the additional assumption that

the submatrix AS has linearly independent columns, (18)

where S is defined in (17). This assumption, which implies that the solution

of the linear system (17) is unique, is sufficient but not necessary for gen-

erating an exact primal solution as will be shown in Section 3.

We turn now to our algorithmic formulation and its convergence.

3. Linear Programming Newton Algorithm: LPN

Our proposed algorithm consists of solving (13) for an approximate

solution y of the linear program (2), computing an exact least 2-norm solu-

tion v to the dual linear program (3) from (12), and finally computing an

exact solution z to the primal linear program (2) from (17). In order to

guarantee global convergence, we utilize an Armijo stepsize (Refs. 18, 19)

and need to make the linear independence assumption (18) on the least 2-

norm solution of the dual linear program (3). We now state our algorithm.

Algorithm 3.1. LPN: Linear Programming Newton Algorithm. Set

the parameter values e, d and tolerance tol (typically 10–3, 10–4, and 10–12

respectively). Start with any y0˛Rn [typically y0 = Ā¢Ā + eI)–1Ā¢b̄, where Ā

6 JOTA: VOL. 121, NO. 1, APRIL 2004

is an arbitrary n· n subset of A and b̄ is the corresponding n·1 subset of b].

For i = 0, 1, . . . , do the following steps.

(I) Compute yi+1 = yi – li(¶2f (yi) + dI)–1rf (yi) = yi + lid
i,

where the Armijo stepsize li =max{1, 1=2, 1=4, . . .} is such that

f (yi) – f (yi + lid
i)$ – (li=4)rf (yi)¢di, (19)

and di is the modified Newton direction,

di = – (¶2
f (yi) + d I)–1rf (yi): (20)

(II) Stop if kyi – yi+1k# tol. Else, set i = i + 1 and go to (I).

(III) Define the least 2-norm dual solution v as

v = (1=e)(Ayi+1 – b)+ (21)

and a solution z of the primal linear program by

Ajz = bj, j˛S := { jjvj>0, j = 1, . . . , m}: (22)

We state a convergence result for this algorithm now.

Theorem 3.1. Each accumulation point ȳ of the sequence {yi} gener-

ated by Algorithm 3.1 solves the exterior penalty problem (4). The corre-

sponding v̄ obtained by setting y and ȳ in (12) is the exact least 2-norm

solution to the dual linear program (3), provided e is sufficiently small. An

exact solution z̄ to the primal linear program (2) is obtained from (22) by

solving for z with v = v̄ , provided that the submatrix AS̄ of A has linearly

independent columns, where

S̄ := { jjv̄ j>0, j = 1, . . . , m}: (23)

Proof. Let e >0. That each accumulation point ȳ of the sequence {yi}

solves the minimization problem (13) follows from standard results [Ref.

17, Theorem 2.1, Examples 2.1(i) and 2.2(iv)], the fact that the direction

choice di of (20) satisfies

–rf (yi)¢di =rf (yi)¢(d I + ¶2
f (yi))–1rf (yi)$ (d +kA¢Ak)–1krf (yi)k2

, (24)

and the fact that we are using an Armijo stepsize (19). Now let e˛(0, ē]. Then

by Proposition 2.1, the corresponding v̄ obtained by setting y to ȳ in (12) is

the exact least 2-norm solution to the dual linear program (3). If the sub-

matrix AS has linearly independent columns, then the solution z̄ of (22) with

v = v̄ is unique and must be a solution of the primal linear program (2). u

JOTA: VOL. 121, NO. 1, APRIL 2004 7

Remark 3.1. Choice of e. Determining the size of ē , such that the

solution v of the quadratic program (6), for e˛(0, ē], is the least 2-norm

solution of the dual problem (3) is not an easy problem theoretically. How-

ever, computationally this does not seem to be critical and is effectively

addressed as follows. By Ref. 20, Corollary 3.2, if for two successive values

of e, e1>e2, the corresponding solutions of the e-perturbed quadratic pro-

grams (6), u1 and u2, are equal, then under certain assumptions, u = u1=u2

is the least 2-norm solution of the dual linear program (3). This result is

implemented computationally by using an e, which when decreased by a

factor of 10 yields the same solution to (6).

We note that the assumptions of Theorem 3.1, and in particular the

uniqueness of the solution of (22) with v = v̄ , imply the uniqueness of the

solution to the primal linear program (2). This follows from the fact that the

least 2-norm multiplier v̄ is a valid optimal multiplier for all optimal solu-

tions of the primal linear program (2) and hence all primal solutions must

equal the solution of the uniquely solvable system AS̄z = bS̄. We term our

condition of linear independence of the columns of AS̄ as a strong uniqueness

condition, because it implies primal solution uniqueness but is not implied by

it. Example 3.1 below has a unique but not strongly unique solution. How-

ever, it is still solvable by our proposed Newton method despite the fact that

its solution is not strongly unique.

Example 3.1. Consider the primal and dual problems

min
x˛R2

x1, s:t: x1 + x2# – 1, x1 – x2#1, – x1#0, (25)

max
0# u˛R3

u1 – u2, s:t: u1 – u2 + u3 = 1, – u1 + u2 = 0: (26)

The unique primal solution is

x1 = 0, x2 = – 1:

The dual solution set is

{u˛R3ju3 = 1, u1 = u2$0},

and the least 2-norm dual solution is

ū1 = ū2 = 0, ū3 = 1:

Thus,

AS̄ =A3 = [– 1, 0],

and the solution x1 = 0, x2 = – 1 is not strongly unique because the columns

of A3 are not linearly independent. However, Algorithm 3.1 solved this

8 JOTA: VOL. 121, NO. 1, APRIL 2004

problem in 5 iterations using the MATLAB Code 4.2 with the given defaults

and without an Armijo stepsize and yielding z = [0, –1]¢ and v = [0, 0, 1]¢.

We note further that Algorithm 3.1 can possibly handle linear programs

with even nonunique solutions as evidenced by the following simple example.

Example 3.2. Consider the primal and dual problems

min
x˛R2

x1 + x2, s:t: x1 – x2# – 1, – x1#0, – x2#0, (27)

max
0# u˛R3

u1, s:t: u1+u2 = 1, u1+u3 = 1: (28)

The primal solution set is

{x˛R2jx1+x2 = 1, x1$0, x2$0},

while the dual solution set consists of the unique point

u1 = 1, u2 = u3 = 0:

When Algorithm 3.1 is applied to this example using the MATLAB Code 4.2

with the given default values, the exact primal z = [1, 0]¢ and dual v = [1, 0, 0]¢
solutions were obtained in two iterations without using the Armijo stepsize.

We give now a sufficient (but in general not necessary) condition for the

sequence {yi} of Algorithm 3.1 to converge.

Corollary 3.1. The sequence {yi} is bounded and hence has an accu-

mulation point and the corresponding sequence {vi} converges to the least

2-norm solution of the dual linear program (3), provided that Rn is con-

tained in the conical hull of the rows of
c¢
A

� �
. That is, for each p˛Rn,

z c¢+ s¢A= p, (z , s)$0, has a solution (z , s)˛R1+n: (29)

Proof. We show prove that the sequence {yi} is bounded, hence it

has an accumulation point. Since all accumulation points of the sequence

{vi}, that correspond to accumulation points of {yi}, are all equal to the

unique least 2-norm solution v̄ of (3), the sequence {vi} must converge to v̄ .

We show now that the sequence {yi} is bounded by exhibiting a con-

tradiction if it were unbounded and if assumption (29) holds.

Suppose that {yi} is unbounded. Then, for some subsequence (for sim-

plicity, we drop the subsequence index), we have by Algorithm 3.1 that

f (yi)# f (y0), yifiO: (30)

JOTA: VOL. 121, NO. 1, APRIL 2004 9

Dividing by kyik2 gives

(1=2)k(A yi=kyik – b=kyik)+k
2
+ ec¢ yi=kyik2

f (y0)=kyik2
: (31)

Letting yifiO and denoting by ŷ an accumulation point of the bounded

sequence yi=kyik, we have that

(1=2)k(Aŷ)+k
2
#0: (32)

Hence,

Aŷ#0, ŷ„0: (33)

From (31) multiplied by kyik and noting that its first term is nonnegative,

we have that

ec¢yi=kyik# f (y0)=kyik, (34)

from which, upon letting yifiO, we get

c¢ŷ#0: (35)

Combining (33) and (35) gives

Aŷ#0, c¢ŷ#0, ŷ„0: (36)

However, this contradicts assumption (29) if we set p = ŷ in (29) as follows:

0 = z c¢ŷ + s¢Aŷ – ŷ¢ŷ#–ŷ¢ŷ<0: (37)

u

Remark 3.2. We note that condition (29) of Corollary 3.1 is equiva-

lent to the primal linear program having a bounded level set, which is simi-

lar to the assumptions made in Ref. 7. To see this, we have by the Farkas

theorem (Ref. 21, Theorem 2.4.6) that (29) is equivalent to

Ax#0, c¢x#0, p¢x>0 has no solution x˛Rn, for each p˛Rn: (38)

This in turn is equivalent to

Ax#0, c¢x#0, x„0 has no solution x˛Rn: (39)

This is equivalent to the boundedness of the level set {x|Ax#b, c¢x#a} of the

linear program (2) for any real number a.

We proceed now to the numerical testing of our algorithm.

4. Numerical Tests

The objectives of the preliminary numerical tests presented here are to

display the simplicity of the proposed LPN algorithm, its competitiveness

10 JOTA: VOL. 121, NO. 1, APRIL 2004

with a state-of-the-art linear programming code for special types of prob-

lems, and its ability to provide exact answers for a class of linear programs

with a very large number of constraints and such that mAn. Typically,

m$10n. We demonstrate also the effectiveness of the LPN algorithm by

testing it and comparing it with CPLEX on standard classification test prob-

lems: four from the University of California Machine Learning Repository

(Ref. 22) and two publicly available datasets (Ref. 23).

4.1. Very Large Synthetic Datasets. We first test LPN on very large

synthetically generated test problems. To display the simplicity of LPN,

we give two MATLAB m-file codes below. The first, lpgen, is a linear pro-

gramming test problem generator. The second, lpnewt1, is an implementa-

tion of Algorithm 3.1 without the apparently unnecessary Armijo stepsize

for the class of problems tested here. A sufficient well-conditioned property

that eliminates the Armijo stepsize requirement (Ref. 1, Theorem 3.6)

apparently is not needed in all the problems tested here. Both m-files

are given below as Code 4.1 and Code 4.2, and are available at:

www.cs.wisc.edu/math-prog/olvi.

The test problem generator lpgen generates a random constraint matrix

A for given m, n, and density d. The elements of A are uniformly distributed

between –50 and +50. A primal random solution x, with elements in

[–10, 10] approximately half of which are zeros, and a dual solution u, with

elements in [0, 10] approximately 3n of which are positive, are first specified.

These solutions are then used to generate an objective function cost vector

c and a right-hand side vector b for the linear program (2). The number 3n

of positive dual variables is motivated by support vector machine applica-

tions (Refs. 24–26) where the number of positive multipliers corresponding

to the support vectors is often a few multiples of the dimensionality n of the

input space.

To test LPN, we solved a number of linear programs generated by

the lpgen Code 4.1 on LOCOP2, a 400 Mhz Pentium II machine with

a maximum of 2 Gigabytes of memory running Windows NT Server 4.0

and compared it with CPLEX 6.5 (Ref. 8). LPN used only the default

values given in Code 4.2, which of course can be overridden. The results are

presented in Table 1.

Seven problems generated by the lpgen Code 4.1 were solved by the

LPN Code 4.2. Problem size varied between 105 to 107 in the number of

nonzero elements of the constraint matrix A. LPN solved all these problems

in 11 to 26 iterations to an accuracy better than 10–13. Comparing the times

for the problems solved, CPLEX ran out of memory on two problems and

was 2.8 to 34.2 times slower on the remaining five problems, with one prob-

lem (the third in Table 1), very poorly solved by CPLEX with a primal

JOTA: VOL. 121, NO. 1, APRIL 2004 11

solution error of 7.0. The dual CPLEX option was used throughout the

numerical test problems because it gave the best results for the type of prob-

lems tested. The other options, primal and barrier, did worse. For example

on the fifth test problem in Table 1 with dual CPLEX time of 238.4 seconds,

the primal CPLEX took 2850.8 seconds, while the barrier CPLEX ran out of

memory.

In order to show that LPN can handle also linear programs with non-

unique solutions, as requested by one of the referees who noted also that the

linear programs of Table 1 as generated by lpgen had unique feasible points

as well, we perturbed the right-hand side b of (2) so that the number of active

constraints at the solutions obtained by LPN and CPLEX were less than n.

These results are presented in Table 2 and show that the accuracy of LPN has

decreased. However, it is still capable of solving these problems to a rea-

sonable accuracy and can still handle the two largest problem which CPLEX

ran out of memory on.

Code 4.1. lpgen MATLAB lp Test Problem Generator.

%lpgen: Generate random solvable lp: min c’x s.t. Ax=<b;
A: m-by-n

%Input: m,n,d(ensity); Output: A,b,c;
(x,u): primal-dual solution

pl=inline(’(abs(x)+x)/2’);%pl(us)function
tic; A=sprand(m,n,d); A=100*(A-0.5*spones(A));
u=sparse(10*pl(rand(m,1)-(m-3*n)/m));
x=10*spdiags((sign(pl(rand(n,1)-rand(n,1)))),0,n,n)

*(rand(n,1)-rand(n,1));
c=-A’*u; b=A*x+spdiags((ones(m,1)-sign(pl(u))),0,m,m)

*10*ones(m,1); toc0=toc;
format short e; [m n d toc0]

Table 1. Comparison of LPN Algorithm 3.1 and CPLEX 6.5 (Ref. 8).

LPN Dual CPLEX 6.5

Problem Size ·Density

m · n · d

Time

(sec)

Iter.

#

Accuracy

kx – zkO
Time

(sec)

Accuracy

kx – rkO
(2.0 · 106) · 100 · 0.05 1041.8 26 1.1 · 10–14 oom oom

(1.5 · 106) · 100 · 0.05 787.0 26 8.8 · 10–15 oom oom

(1.0 · 105) · 1000 · 0.1 840.5 14 5.8 · 10–14 28716.6 7.0

(1.0 · 105) · 100 · 1.0 228.7 15 8.9 · 10–15 905.0 7.5 · 10–14

(1.0 · 105) · 100 · 0.1 50.7 18 8.9 · 10–15 238.4 5.3 · 10–12

(1.0 · 104) · 1000 · 0.1 417.5 11 5.1 · 10–14 3513.2 5.4 · 10–12

(1.0 · 104) · 100 · 0.1 4.9 17 7.3 · 10–15 13.8 1.3 · 10–11

‘‘oom’’ denotes out of memory. LPN time is total time: toc2 from Code 4.2.

12 JOTA: VOL. 121, NO. 1, APRIL 2004

Code 4.2. lpnewt1 MATLAB LPN Algorithm 3.1 without Armijo.

%lpnewt1: Solve primal LP: min c’x s.t. Ax=<b
%Via Newton for least 2-norm dual LP: max -b’v s.t. -A’v=c, v>=0
%Input: c, A, b, epsi, delta, tol, itmax;

Output: v (12norm dual sol), z primal sol
epsi=le-3; tol=1e-12; delta=le-4;

itmax=100;%default inputs
pl=inline(’(abs(x)+x)/2’);%pl(us) function
tic; i=0; z=0; y=((A(1:n,:))’*A(1:n,:)+epsi*eye(n))\

(A(1:n,:))’*b(1:n);%initial y
while (i<itmax & norm(y-z,inf)>tol & toc<1800)

df=A’*pl((A*y-b))+epsi*c;
d2f=A’*spdiags(sign(pl(A*y-b)),0,m,m)*A+delta*speye(n);
z=y; y=y-d2f\df;
i=i+1;

end

toc1=toc;v=pl(A*y-b)/epsi;t=find(v);z=A(t,:)\b(t);toc2=toc;
format short e;

[epsi delta to1 i-1 toc1 toc2 norm(x-y,inf) norm(x-z,inf)]

Table 2. Comparison of LPN Algorithm 3.1 and CPLEX 7.1 (Ref. 8)

on linear programs with nonunique solutions.

Problem Size ·Density

m · n · d

LPN Dual CPLEX 7.1

Time

(sec)

Iter.

#

Accuracy

|c¢z + b¢v|
k(– Az + b)+kO

Act.

Constr.

#

Time

(sec)

Act.

Constr.

#

(2.0 · 106) · 100 · 0.05 3280.0 5 3.8 · 10–5

4.1 · 10–6
34 oom oom

(1.5 · 106) · 100 · 0.05 1899.1 5 1.3 · 10–4

3.3 · 10–6
33 oom oom

(1.0 · 105) · 1000 · 0.10 3014.5 7 5.7 · 10–5

2.5 · 10–6
240 15335.0 102

(1.0 · 105) · 100 · 1.00 190.0 6 8.7 · 10–5

2.5 · 10–6
32 317.5 57

(1.0 · 105) · 100 · 0.10 52.3 6 2.0 · 10–10

7.3 · 10–7
21 95.6 89

(1.0 · 104) · 1000 · 0.10 48.2 8 1.4 · 10–7

1.6 · 10–6
43 2018.4 105

(1.0 · 104) · 100 · 0.10 4.5 7 2.5 · 10–6

1.8 · 10–6
22 6.8 86

‘‘oom’’ denotes out of memory.

JOTA: VOL. 121, NO. 1, APRIL 2004 13

4.2. Machine Learning Test Problems. In this section, we test and

compare LPN with CPLEX on four classification datasets from the UCI

Machine Learning Repository (Ref. 22) and two publicly available datasets

(Ref. 23). Again, we used LOCOP2.

The classification model that we shall employ here consists of a linear

support vector machine (Refs. 24, 25, 27, 28) which we can state as the

following linear program:

min
(w, g , s, e)˛Rq+1+q+1

e¢s + ne, (40a)

s:t: D(Bw – eg) + ee$e, –s#w#s, e$0, r¢w$2: (40b)

Here, e is a column vector of ones and n is a positive parameter that balances

the model’s ability to generalize to new unseen data (small n) versus empiri-

cal data fitting (large n). The matrices B˛Rp · q and D˛Rp · p constitute the

problem data. The p rows of B represent p given data points in the input

space Rq, with each point belonging to class +1 if the corresponding diagonal

element of the diagonal matrix D is +1, or class –1 if the corresponding

diagonal element is –1. The vector r is the difference between the mean of the

points in class +1 and the mean of the points in class –1. The linear program

(40) generates a separating plane,

x¢w = g , (41)

which separates approximately the points of classes +1 and –1. This sep-

arating plane lies midway between the parallel bounding planes

x¢w = gt1: (42)

With a maximum error of e, the points of class +1 lie in closed halfspace

{xjx¢w$g + 1}: (43)

Similarly, with maximum error of e, the points of class –1 lie in the closed

halfspace

{xjx¢w#g – 1}: (44)

The error e is minimized by the linear program (40) relative to e¢s = kwk1. The

last constraint of the linear program (40) excludes the degenerate solution

w= 0 by implying the usually satisfied condition that the 1-norm distance

2=kwkO (Ref. 29) between the two parallel bounding planes (42) does not

exceed the 1-norm distance krk1 between the means of the two classes as

follows:

kwkO � krk1$r¢w$2: (45)

14 JOTA: VOL. 121, NO. 1, APRIL 2004

The linear program (40) was set up in the form of the linear program (2) with

n = 2q + 2 and m = 2p + 2q + 2:

The linear program (2) was solved by both LPN and CPLEX for six standard

test problems varying in size between 297 points to 4192 points and for input

spaces of dimensionality varying between 6 and 14. The results are given in

Table 3. Because these are relatively small problems, CPLEX solved these

problems in less time than LPN and with much greater accuracy as measured

by the relative infeasibility of a solution point to (2),

k(Ax – b)+k1=kAxk1: (46)

However, correctness of the classifying separating plane on both the original

data (training correctness) and on the tenfold testing (testing correctness)

obtained by leaving one tenth of the data out for testing, repeating ten times

and averaging, were higher for LPN than those for CPLEX on all six test

problems. In addition, the LPN correctness values were comparable to those

obtained by other methods (Refs. 2, 30, 31). These test correctness values are

the key properties by which the machine learning classifiers are evaluated

and are not always best when a very accurate solution to the linear program

(40) is obtained. The explanation for this apparent paradox is that a highly

accurate solution causes overfitting and may bias the classifier toward the

Table 3. Comparison of LPN Algorithm 3.1 and CPLEX 6.5 (Ref. 8)

on six publicly available machine learning problems.

LPN Dual CPLEX 6.5

Problem

m · n, p · q

Sec

Infeas

Train

Test

Sec

Infeas

Train

Test

Bupa Liver

359 · 14, 345 · 6

0.11

8.10e-3

68.12%

66.71%

0.05

3.08e-19

64.64%

63.92%

Pima Indians

786 · 18, 768 · 8

0.21

4.30e-3

76.69%

76.20%

0.13

1.29e-18

73.83%

73.39%

Cleveland Heart

325 · 28, 297 · 13

0.14

1.31e-2

87.54%

84.74%

0.09

5.44e-18

83.16%

81.69%

Housing

534 · 28, 506 · 13

0.24

9.80e-3

86.96%

85.97%

0.13

1.02e-17

83.60%

83.72%

Galaxy Bright

2492 · 30, 2462 · 14

6.23

8.03e-4

99.63%

99.38%

0.79

5.37e-15

99.15%

99.16%

Galaxy Dim

4222 · 30, 4192 · 14

13.86

1.50e-3

94.58%

94.43%

1.57

1.81e-18

90.96%

90.71%

m · n is the size of the matrix A of (2). p · q is the size of the matrix B of (40).

‘‘Infeas’’ denotes solution infeasibility (46). ‘‘Train’’ is training set correctness.

‘‘Test’’ is tenfold testing set correctness.

JOTA: VOL. 121, NO. 1, APRIL 2004 15

given empirical data at the expense of unseen data and hence results in poor

generalization which translates into lower test set correctness as seen here for

the CPLEX results. Application of Newton type methods have yielded some

of the best test correctness results for classification problems (Refs. 2, 19, 32).

The parameter value for n for both LPN and CPLEX was the same and was

chosen to optimize training set correctness. For all problems in Table 3, the

value n = 105 was used. All parameters of LPN used were set at the default

values given in the MATLAB Code 4.2.

5. Conclusions

We have presented LPN, a fast Newton algorithm for solving a class of

linear programs. Computational testing on problems with mAn and m$n

demonstrate the effectiveness of LPN in comparison with a state-of-the-art

linear programming solver for this class of problems. Future work includes

theoretical conditions under which LPN terminates without a stepsize in a

finite number of steps, as it does in all the numerical examples presented here.

Computational improvements might include novel ways of generating a

primal solution from the dual least 2-norm solution, thus enabling LPN to

handle all types of linear programs.

References

1. MANGASARIAN, O. L., A Finite Newton Method for Classification Problems,

Report 01-11, Data Mining Institute, Computer Sciences Department, University

of Wisconsin, Madison, Wisconsin, 2001; see also Optimization Methods and

Software, Vol. 17, pp. 913–929, 2002 and ftp://ftp.cs.wisc.edu/pub/dmi/tech-

reports/01-11.ps.

2. FUNG, G., and MANGASARIAN, O. L., Finite Newton Method for Lagrangian

Support Vector Machine Classification, Report 02-01, Data Mining Institute,

Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,

2002; see also Neurocomputing, Vol. 55, pp. 39–55, 2003 and ftp://ftp.cs.wisc.

edu/pub/dmi/tech-reports/02-01.ps.

3. MANGASARIAN, O. L., Normal Solutions of Linear Programs, Mathematical Pro-

gramming Study, Vol. 22, pp. 206–216, 1984.

4. MANGASARIAN, O. L., and DE LEONE, R., Error Bounds for Strongly Convex

Programs and (Super) Linearly Convergent Iterative Schemes for the Least 2-Norm

Solution of Linear Programs, Applied Mathematics and Optimization, Vol. 17,

pp. 1–14, 1988.

5. MANGASARIAN, O. L., and MEYER, R. R., Nonlinear Perturbation of Linear Pro-

grams, SIAM Journal on Control and Optimization, Vol. 17, pp. 745–752, 1979.

16 JOTA: VOL. 121, NO. 1, APRIL 2004

6. GOLIKOV, A. I., and EVTUSHENKO, Y. G., Search for Normal Solutions in Linear

Programming, Computational Mathematics and Mathematical Physics, Vol. 14,

pp. 1694–1714, 2000.

7. KANZOW, C., QI, H., and QI, L., On the Minimum Norm Solution of Linear Pro-

grams, Preprint, University of Hamburg, Hamburg, Germany, 2001; see also

Journal of Optimization Theory and Applications (to appear) and http://

www.math.uni-hamburg.de/home/kanzow/paper.html.

8. CPLEX Optimization, Incline Village, Nevada, Using the CPLEX(TM) Linear

Optimizer and CPLEX(TM) Mixed Integer Optimizer (Version 2.0), 1992.

9. CLARKSON, K. L., Las Vegas Algorithms for Linear and Integer Programming,

Journal of the Association for Computing Machinery, Vol. 42, pp. 488–499, 1995.

10. KRISHNAN, K., and MITCHELL, J., A Linear Programming Approach to Semidefinite

Programming Problems, Working Paper, Rensselaer Polytechnic Institute, Troy,

NY, 2001.

11. PINAR, M. C., Piecewise-Linear Pathways to Optimal Solution Set in Linear

Programming, Journal of Optimization Theory and Applications, Vol. 93,

pp. 619–634, 1997.

12. HIRIART-URRUTY, J. B., STRODIOT, J. J., and NGUYEN, V. H., Generalized Hessian

Matrix and Second-Order Optimality Conditions for Problems with CL1 Data,

Applied Mathematics and Optimization, Vol. 11, pp. 43–56, 1984.

13. FACCHINEI, F., Minimization of SC1 Functions and the Maratos Effect, Operations

Research Letters, Vol. 17, pp. 131–137, 1995.

14. SMITH, P. W., and WOLKOWICZ, H., A Nonlinear Equation for Linear Program-

ming, Mathematical Programming, Vol. 34, pp. 235–238, 1986.

15. FIACCO, A. V., and MCCORMICK, G. P., Nonlinear Programming: Sequential

Unconstrained Minimization Techniques, John Wiley and Sons, New York,

NY, 1968.

16. BERTSEKAS, D. P., Nonlinear Programming, 2nd Edition, Athena Scientific,

Belmont, Massachusetts, 1999.

17. MANGASARIAN, O. L., Parallel Gradient Distribution in Unconstrained Optimiza-

tion, SIAM Journal on Control and Optimization, Vol. 33, pp. 1916–1925, 1995;

see also ftp://ftp.cs.wisc.edu/tech-reports/reports/1993/tr1145.ps.

18. ARMIJO, L., Minimization of Functions Having Lipschitz-Continuous First Partial

Derivatives, Pacific Journal of Mathematics, Vol. 16, pp. 1–3, 1966.

19. LEE, Y. J., and MANGASARIAN, O. L., SSVM: A Smooth Support Vector Machine,

Computational Optimization and Applications, Vol. 20, pp. 5–22, 2001; see

also Report 99-03, Data Mining Institute, University of Wisconsin, 1999 and

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-03.ps.

20. LUCIDI, S., A New Result in the Theory and Computation of the Least-Norm

Solution of a Linear Program, Journal of Optimization Theory and Applications,

Vol. 55, pp. 103–117, 1987.

21. MANGASARIAN, O. L., Nonlinear Programming, SIAM, Philadelphia, Pennsyl-

vania, 1994.

22. MURPHY, P. M., and AHA, D. W., UCI Machine Learning Repository, 1992; see

also www.ics.uci.edu/~mlearn/MLRepository.html.

JOTA: VOL. 121, NO. 1, APRIL 2004 17

23. ODEWAHN, S., STOCKWELL, E., PENNINGTON, R., HUMPHREYS, R., and ZUMACH, W.,

Automated Star=Galaxy Discrimination with Neural Networks, Astronomical

Journal, Vol. 103, pp. 318–331, 1992.

24. MANGASARIAN, O. L., Generalized Support Vector Machines, Advances in Large

Margin Classifiers, Edited by A. Smola, P. Bartlett, B. Schölkopf, and D.

Schuurmans, MIT Press, Cambridge, Massachusetts, pp. 135–146, 2000; see also

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

25. CRISTIANINI, N., and SHAWE-TAYLOR, J., An Introduction to Support Vector

Machines, Cambridge University Press, Cambridge, Massachusetts, 2000.

26. SMOLA, A., and SCHÖLKOPF, B., Learning with Kernels, MIT Press, Cambridge,

Massachusetts, 2002.

27. VAPNIK, V. N., The Nature of Statistical Learning Theory, 2nd Edition, Springer,

New York, NY, 2000.

28. BRADLEY, P. S., and MANGASARIAN, O. L., Feature Selection via Concave Mini-

mization and Support Vector Machines, Machine Learning, Proceedings of the

15th International Conference (ICML ’98), Edited by J. Shavlik, and M. Kauf-

mann, San Francisco, California, pp. 82–90, 1998; see also ftp://ftp.cs.wisc.edu/

math-prog/tech-reports/98-03.ps.

29. MANGASARIAN, O. L., Arbitrary-Norm Separating Plane, Operations Research

Letters, Vol. 24, pp. 15–23, 1999; see also ftp://ftp.cs.wisc.edu/math-prog/tech-

reports/97-07r.ps.

30. JOACHIMS, T., Making Large-Scale Support Vector Machine Learning Practical,

Advances in Kernel Methods – Support Vector Learning, Edited by B. Schölk-

opf, C. J. C. Burges, and A. J. Smola, MIT Press, Cambridge, Massachusetts,

pp. 169–184, 1999.

31. MANGASARIAN, O. L., and MUSICANT, D. R., Lagrangian Support Vector

Machines, Journal of Machine Learning Research, Vol. 1, pp. 161–177, 2001; see

also ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps.

32. FUNG, G., and MANGASARIAN, O. L., A Feature Selection Newton Method for

Support Vector Machine Classification, Report 02-03, Data Mining Institute,

Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,

2002; see also Computational Optimization and Applications (to appear) and

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-03.ps.

18 JOTA: VOL. 121, NO. 1, APRIL 2004

